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Motivation

Motivation

1. Theoretical issues

o find damping models that preserve eigen modes

@ design nonlinear dampings in such a class

@ provide a power balanced formulation that is preserved in
simulations

2. Application in musical acoustics

Build physical models to produce:
@ a variety of beam sounds (glokenspiel, xylophone, marimba,
etc)

@ morphed sounds through some extrapolations based on
physical grounds
(e.g. meta-materials with damping depending on the magnitude)
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Power-balanced formulation

(Ingredient 1) A physical system is made of ...

@ Energy-storing components: (energy)

E=3p1€ >0
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Power-balanced formulation

(Ingredient 1) A physical system is made of ...

@ Energy-storing components: (energy)
E=Y11en20

o Dissipative components:  (dissipated power)
Q=Yg dm >0

@ External sources: (external power)
Pext = Z,Ij:l Sp

o Conservative connections  (power balance)
% = —Q + Pext




Power-balanced formulation

(Ingredient 1) A physical system is made of ...

@ Energy-storing components: (energy)
E = H(x) = Y01 Hnlxn) 2 0

Dissipative components:  (dissipated power)
Q=zw)"w=SM 7z, (Wn)wmn>0
(effort x flux : force X velocity, voltage x current, etc)

External sources: (external power)
— Ty — P
Pext =u'y = Zp:l UpYp
Conservative connections  (power balance)
_ T dx T T
0=VH(x)" & +z(w)''w—u'y




Power-balanced formulation

(Ingredient 1) A physical system is made of ...
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Power-balanced formulation

(Ingredient 1) A physical system is made of ...

@ Energy-storing components: (energy)
E = H(x) = Y71 Ha(xn) > 0

@ Dissipative components:  (dissipated power)
Q= z(w)Tw = 331 Zin(Wim) Wi > 0
(effort x flux : force X velocity, voltage X current, etc)

@ External sources: (external power)
Pext =u'y = 25:1 UpYp

o Conservative connections  (power balance)
0=VHx)" % +z(w)"w—u'.y

v

Power balance

w | =S| z(w) _ ATSA
j u
—_— if S=—S5T




Power-balanced formulation

Example: damped mechanical oscillator

_ _ | Mq| momentum | 0 \_
I k_,(\f\g X = { q} position ()
M

j dx _ {Mq} inertia force VH(x)= { q ] velocity
EHC

-1 .
T [/\// 0 } kinetic

potential

dt q velocity Kq spring force
K w=gq velocity | z(w) = Cq damping force
y=4q velocity | u="f external force

Mg+ Ca+Kq=Ff



Power-balanced formulation

Example: damped mechanical oscillator

_ Mg | momentum 1T M-t 0 kinetic
‘\’(\f\g |: :| pos/t/on H(X) 2X |: O K X potential
M M inertia force q velocity

= VH(x)= .
velocity K spring force
K C w=q velocity | z(w) = Cq damping force
y=4q velocity | u=f external force

L & RS I R WAL IE9)
Mg+ Cg+Kg=1+— w =0T 919 | [ 2z
-y -1 0 0 0 u




Power-balanced formulation

Example: damped mechanical oscillator

Mg | momentum 1.7 M=t 0 kinetic
I '\’(\f\g [ } position Hx)= 3% [ 0 K potential
M M inertia force q velocity

= VH(x)= )
velocity Kq spring force
K C w=q velocity | z(w) = Cq damping force
y=4q velocity | u="f external force

e EY (L2 o e[ e [T
Mq+Cq+Kq:f<_ w = 1 0 0 0 . Z(W)
—y 1 0] o o u

N coupled oscillators ? g: vector

Matrices: M=MT >0, K=K" >0, C=C" >0,1= Iy




Power-balanced formulation

Example: damped mechanical oscillator

Mg | momentum _1.T M-t o0 kinetic
I k’(\f\g X = { q} position H(x)= 2X [ 0 K X potential
M dx | M@ | inertia force H(x) — q velocity
e ™ ) VH(x)= K .
q velocity q spring force
K C w=q velocity | z(w) = Cq damping force
y=4q velocity | u="f external force
B\ (2 bl ala) (7O
Mg+ Cqg+ Kg=1f «+— w | = 1 0 0 0 . z(w)
-y -1 0 0 (] u

Passive-guaranteed simulations ? The power balance is preserved, if

x x(k+1)—x(k Hn (xn(k+1) ) —Hn ( xn(k)
4y M) ang [VH(x)], - elele) =t lall)

including for nonlinear systems [Lopes et al., IFAC-LHMNLC'2015]




Damping model

(Ingredient 2) Damping models for Mg+ Cqg+ Kq = f
Conservative problem (C=0)
o g+ (M 1K)g=M"1f

o Eigen-modes e;: (M~1K)e; = w?e; (w;: pulsation)

Damping that preserves eigen-modes ?

@ Choose M~1C as a non-negative polynomial of matrix M~1K
— Caughey class (1960): C = coM + a1 K + oKM™1K + ...

\




Damping model

(Ingredient 2) Damping models for Mg+ Cqg+ Kq = f
Conservative problem (C=0)
o g+ (M 1K)g=M"1f

o Eigen-modes e;: (M~1K)e; = w?e; (w;: pulsation)

Damping that preserves eigen-modes ?

@ Choose M~1C as a non-negative polynomial of matrix M~1K
— Caughey class (1960): C = coM + a1 K + oKM™1K + ...

Eigen-modes with nonlinear dynamics ?
@ Make ¢, depend on the state

Ex.: damping as a function of energy

@ Increasing: kn(h)=c,+(ci— ¢, )f(hi)

@ Decreasing: r;(h)=c—(cf— ¢, )f(hi) ‘,/‘




Application

Application: the Euler-Bernoulli beam

1. Pinned beam excited by a distributed force

(H1) Euler-Bernoulli kinematics: straight cross-section after deformation
(H2) linear approximation for the conservative problem

(H3) viscous and structural dampings: only ¢, ¢; > 0

2. Dimensionless model (g: deflection, t > 0,0 < ¢ <1)
® PDE: 9q +(c0+ad})0:q+ 0} q=foxs
~N Y= ~~

M=ld c K
@ Boundaries ¢ € {0,1}: fixed extremities (§=0), no momentum (9;q=0)

1 2 \2 2
(9%q)" , (0:q)
@ Energy: E:/ + de
o ( 2 2 )

3. Modal decomposition: ey (£)=v2sin(knl) (km=mm, 1<m<n)
PHS with x=[q; 4], g=[q1,---,qn]", v = [t1,...,u,]T (projection of fuy)
where M = [,, K = r*diag(1,...,n)* and C = g/, +c1K




Application

Damping and simulation parameters

Examples of spectrograms for standard linear dampings: ¢y ~ 1072

metal (c; ~ 1079) glass (c1 ~ 107°) wood (¢ ~ 107%)

C(x) = co(x)] + c1(x)K with ’ metal \ ¢, =0.02 \ G =

cn(x) = Bn(H(x)) €[z, cf]  [wood | ¢ =0.04 [ ¢f =10 “ |

Numerical method preserving the power balance (discrete gradient)

@ force distributed close to z =0: u=[1,...,1]"f

@ listened signal: acceleration [1,...,1]y
@ n =9 modes and time step s.t. i = 220Hz to fy ~ n?*f; = 17820 Hz




Application

(Results) Case 1: E<1 — metal, E > 1 — wood

force: 5 piecewise constant pulses (0.1ms) with increasing magnitude

overview ZO0OMS total (black), kinetic (red) and potential (blue)
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Application

(Results) Case 2: E<1 — wood, E > 1 — metal
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Conclusion

Conclusion

For linear mechanical problems

Theoretical
@ Port-Hamiltonian Formulation (power balance)

@ class of parametrized nonlinear damping models

@ preservation of the original eigenstructure

Practical (sound synthesis of vibraphone, xylophone, marimba, etc)
(a) perceptively relevant variety of sounds with a very few
parameters

(b) control of the dissipation properties (only) according to
the magnitude (here, the total energy),

(a,b) — morphed sounds based on physical grounds

— More technical details in [Hélie, Matignon, IFAC-LHMNLC'2015]



Conclusion

Conclusion

Some perspectives

Theoretical: Extensions to

@ non ideal boundary conditions
@ non polynomial operators C (rational functions, etc)

@ some classes of nonlinear conservative problems

Applications: Examination of

e 1D/2D models of musical interest (strings, plates, shells)

@ other nonlinear dampings relevant for musical purposes
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