Physically-Based Dynamic Morphing of Beam Sounds (a power-balanced formulation)

<u>T. Hélie¹</u> and D. Matignon²

thomas.helie@ircam.fr, denis.matignon@isae.fr

1: Laboratory of Sciences and Technologies for Music and Sound, IRCAM-CNRS-UPMC, 1, pl. Igor Stravinsky, 75004 Paris, France

2: University of Toulouse, ISAE-Supaéro. 10, av. Edouard Belin. BP 54032. 31055 Toulouse Cedex 4, France

ViennaTalk 2015 - Vienna, Austria, September, 2015

Project Hamecmopsys (https://hamecmopsys.ens2m.fr/)

Motivation	Power-balanced formulation	Damping model	Application	Conclusion

Motivation

1. Theoretical issues

- find damping models that preserve eigen modes
- design nonlinear dampings in such a class
- provide a **power balanced formulation** that is preserved in **simulations**

2. Application in musical acoustics

Build physical models to produce:

- a variety of beam sounds (glokenspiel, xylophone, marimba, etc)
- morphed sounds through some extrapolations based on physical grounds

(e.g. meta-materials with damping depending on the magnitude)

Motivation	Power-balanced formulation	Damping model	Application	Conclusion
Outline				

- 2 Power-balanced formulation
- 3 Damping model

◆□▶ ◆□▶ ◆ □▶ ◆ □ ● ● ● ●

• Energy-storing components: (energy) $E = \sum_{n=1}^{N} e_n \ge 0$

◆□▶ ◆□▶ ★ □▶ ★ □▶ - □ - つへで

- Energy-storing components: (energy) $E = \sum_{n=1}^{N} e_n \ge 0$
- Dissipative components: (dissipated power) $Q = \sum_{m=1}^{M} d_m \ge 0$

• Energy-storing components: (energy) $E = \sum_{n=1}^{N} e_n \ge 0$ • Dissipative components: (dissipated power) $Q = \sum_{m=1}^{M} d_m \ge 0$ • External sources: (external power)

 $P_{\rm ext} = \sum_{p=1}^{P} s_p$

• Energy-storing components: (energy) $E = \sum_{n=1}^{N} e_n \ge 0$ • Dissipative components: (dissipated power) $Q = \sum_{m=1}^{M} d_m \ge 0$ • External sources: (external power) $P_{\text{ext}} = \sum_{p=1}^{P} s_p$ • Conservative connections (power balance) $\frac{dE}{dt} = -Q + P_{\text{ext}}$

イロト 不得 とくほと くほとう ほ

- Energy-storing components: (energy) $E = H(\mathbf{x}) = \sum_{n=1}^{N} H_n(x_n) \ge 0$
- Dissipative components: (dissipated power) $Q = \mathbf{z}(\mathbf{w})^{\mathsf{T}}\mathbf{w} = \sum_{m=1}^{M} z_m(w_m) w_m \ge 0$ (effort × flux : force × velocity, voltage × current, etc)
- External sources: (external power) $P_{\text{ext}} = \mathbf{u}^T \mathbf{y} = \sum_{p=1}^{P} u_p y_p$
- Conservative connections (power balance) $0 = \nabla H(x)^T \frac{d\mathbf{x}}{dt} + \mathbf{z}(\mathbf{w})^T \cdot \mathbf{w} - \mathbf{u}^T \cdot \mathbf{y}$

(energy)

(Ingredient 1) A physical system is made of ...

- Energy-storing components: $E = H(\mathbf{x}) = \sum_{n=1}^{N} H_n(x_n) \ge 0$
- Dissipative components: (dissipated power) $Q = \mathbf{z}(\mathbf{w})^{\mathsf{T}}\mathbf{w} = \sum_{m=1}^{M} z_m(w_m) w_m \ge 0$ (effort \times flux : force \times velocity, voltage \times current, etc)
- External sources: (external power) $P_{\text{ext}} = \mathbf{u}^T \mathbf{y} = \sum_{p=1}^{P} u_p y_p$
- Conservative connections (power balance) $0 = \nabla H(x)^T \frac{\mathrm{d}x}{\mathrm{d}t} + \mathbf{z}(\mathbf{w})^T \cdot \mathbf{w} - \mathbf{u}^T \cdot \mathbf{y}$

Port-Hamiltonian Formulation

Power balance

$$\frac{\left(\frac{d\mathbf{x}}{dt}\right)}{\mathbf{w}} = S. \left(\frac{\nabla H(\mathbf{x})}{\mathbf{z}(\mathbf{w})}\right)$$

(energy)

(Ingredient 1) A physical system is made of ...

- Energy-storing components: $E = H(\mathbf{x}) = \sum_{n=1}^{N} H_n(x_n) \ge 0$
- Dissipative components: (dissipated power) $Q = \mathbf{z}(\mathbf{w})^{\mathsf{T}}\mathbf{w} = \sum_{m=1}^{M} z_m(w_m) w_m \ge 0$ (effort × flux : force × velocity, voltage × current, etc)
- External sources: (external power) $P_{\text{ext}} = \mathbf{u}^T \mathbf{y} = \sum_{p=1}^{P} u_p y_p$
- Conservative connections (power balance) $0 = \nabla H(x)^T \frac{d\mathbf{x}}{dt} + \mathbf{z}(\mathbf{w})^T \cdot \mathbf{w} - \mathbf{u}^T \cdot \mathbf{y}$

Port-Hamiltonian Formulation

R

 $\begin{pmatrix} \frac{\overline{dt}}{\mathbf{w}} \\ \underline{\mathbf{w}} \end{pmatrix} = S. \begin{pmatrix} \frac{\sqrt{H(\mathbf{x})}}{\mathbf{z}(\mathbf{w})} \end{pmatrix}$

Power balance

$$\begin{array}{rcl}
0 &=& A^T B \\
&=& A^T S A
\end{array}$$

if
$$S = -S^T$$

290

Example: damped mechanical oscillator

Example: damped mechanical oscillator

Example: damped mechanical oscillator

N coupled oscillators ? q: vector Matrices: $M = M^T > 0$, $K = K^T \ge 0$, $C = C^T \ge 0$, $1 \equiv I_N$

including for nonlinear systems

Example: damped mechanical oscillator

[Lopes et al., IFAC-LHMNLC'2015]

(Ingredient 2) Damping models for $M\ddot{q} + C\dot{q} + Kq = f$

Conservative problem (C=0)

•
$$\ddot{q} + (M^{-1}K)q = M^{-1}f$$

• Eigen-modes
$$e_i$$
: $(M^{-1}K)e_i = \omega_i^2 e_i$ (ω_i : pulsation)

Damping that preserves eigen-modes ?

- Choose $M^{-1}C$ as a non-negative polynomial of matrix $M^{-1}K$
- → Caughey class (1960): $C = c_0 M + c_1 K + c_2 K M^{-1} K + ...$

(Ingredient 2) Damping models for $M\ddot{q} + C\dot{q} + Kq = f$

Conservative problem (C=0)

•
$$\ddot{q} + (M^{-1}K)q = M^{-1}f$$

• Eigen-modes
$$e_i$$
: $(M^{-1}K)e_i = \omega_i^2 e_i$ (ω_i : pulsation)

Damping that preserves eigen-modes ?

- Choose $M^{-1}C$ as a non-negative polynomial of matrix $M^{-1}K$
- \rightarrow Caughey class (1960): $C = c_0 M + c_1 K + c_2 K M^{-1} K + \dots$

Eigen-modes with nonlinear dynamics ?

• Make c_n depend on the state

Ex.: damping as a function of energy $c_n(x) = \kappa_n(H(x)) \in [c_n^-, c_n^+]$

• Increasing:
$$\kappa_n(h) = \frac{c_n}{c_n} + (c_n^+ - c_n^-) f(\frac{h}{h_0})$$

• Decreasing: $\kappa_I(h) = c_n^+ - (c_n^+ - c_n^-) f(\frac{h}{h_0})$

Application: the Euler-Bernoulli beam

- 1. Pinned beam excited by a distributed force
- (H1) Euler-Bernoulli kinematics: straight cross-section after deformation
- (H2) linear approximation for the conservative problem
- (H3) viscous and structural dampings: only $c_0, c_1 \ge 0$

2. Dimensionless model

(q: deflection, $t \ge 0$, $0 \le \ell \le 1$)

• PDE:
$$\underbrace{\partial_t^2 q}_{\mathcal{M}=td} + \underbrace{(c_0 + c_1 \partial_\ell^4)}_{\mathcal{C}} \partial_t q + \underbrace{\partial_\ell^4}_{\mathcal{K}} q = \mathbf{f}_{\text{ext}}$$

• Boundaries $\ell \in \{0,1\}$: fixed extremities (q=0), no momentum $(\partial_{\ell}^2 q=0)$

• Energy:
$$E = \int_0^1 \left(\frac{(\partial_\ell^2 q)^2}{2} + \frac{(\partial_t q)^2}{2} \right) \mathrm{d}\ell$$

3. Modal decomposition: $e_m(\ell) = \sqrt{2} \sin(k_m \ell)$ $(k_m = m\pi, 1 \le m \le n)$ PHS with $x = [q; \dot{q}], q = [q_1, \dots, q_n]^T, u = [u_1, \dots, u_n]^T$ (projection of f_{ext}) where $M = I_n, \quad K = \pi^4 \text{diag}(1, \dots, n)^4$, and $C = c_0 I_n + c_1 K$

Damping and simulation parameters

Examples of spectrograms for standard linear dampings: $c_0 \sim 10^{-2}$

Nonlinear damping (from metal to wood):

$C(x) = c_0(x)I + c_1(x)K$ with	
$c_n(x) = \beta_n(H(x)) \in [c_n^-, c_n^+]$	

metal

$$c_0^- = 0.02$$
 $c_1^- = 10^{-6}$

 wood
 $c_0^+ = 0.04$
 $c_1^+ = 10^{-4}$

Numerical method preserving the power balance (discrete gradient)

- force distributed close to z = 0: $u = [1, ..., 1]^T f$
- listened signal: acceleration $[1, \ldots, 1]\dot{y}$

• n = 9 modes and time step s.t. $f_1 = 220$ Hz to $f_9 \approx n^2 f_1 = 17820$ Hz

 $) \land \bigcirc$

(Results) Case 1: $E \ll 1 \longrightarrow$ metal, $E \gg 1 \longrightarrow$ wood

force: 5 piecewise constant pulses (0.1ms) with increasing magnitude

(Results) Case 2: $E \ll 1 \longrightarrow$ wood , $E \gg 1 \longrightarrow$ metal

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ のへで

Conclusion

For linear mechanical problems

Theoretical

- Port-Hamiltonian Formulation (power balance)
- class of parametrized nonlinear damping models
- preservation of the original eigenstructure

<u>Practical</u> (sound synthesis of vibraphone, xylophone, marimba, etc)

- (a) **perceptively relevant variety** of sounds with a very few parameters
- (b) **control of the dissipation properties** (only) according to the magnitude (here, the total energy),

 $(a,b) \rightarrow$ morphed sounds based on physical grounds

 \rightarrow More technical details in [Hélie, Matignon, IFAC-LHMNLC'2015]

Conclusion

Some perspectives

Theoretical: Extensions to

- non ideal boundary conditions
- non polynomial operators C (rational functions, etc)
- some classes of nonlinear conservative problems

Applications: Examination of

- 1D/2D models of musical interest (strings, plates, shells)
- other nonlinear dampings relevant for musical purposes

Masson.

References

Graff, K.F. (1991). Wave motion in elastic solids. Dover, New York.
Hélie, T. and Matignon, D. (2001). Damping models for the sound synthesis of bar-like instruments. In the 5th Conf. on Systemics, Cybernetics and Infor- matics, (10) 541–546. Orlando, USA.
Jacob, B., Trunk, C., and Winklmeier, M. (2008). Analyticity and Riesz basis property of semigroups as- sociated to damped vibrations. <i>J. Evol. Eq.</i> , 8(2), 263–281.
Lambourg, C., Chaigne, A., and Matignon, D. (2001). Time-domain simulation of damped impacted plates. part ii. numerical model and results. J. Acoust. Soc. Amer., 109, 1433-1447.

Géradin, M. and Rixen, D. (1996). Théorie des vibrations.

Matignon, D. and Hélie, T. (2013).

A class of damping models preserving eigenspaces for linear conservative port-Hamiltonian systems. European Journal of Control, 19-6, 486-494.

van der Schaft, A. and Jeltsema, D. (2014).

Port-Hamiltonian Systems Theory: An Introductory Overview. Now Publishers Inc.