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Context and motivations

Thesis (started in October 2015)
• Goal: Realist instrumental sound synthesis (tone evolution VS. note and loudness)
• Idea:

InputOutput
� - Identification

Nonlinear systems under study:
Distortion pedal, compressor, loudspeaker, nonlinear resonator, ...

• Fading memory
• Regular nonlinearities:

‚ Taylor-like expansion
‚ No chaotic behaviour
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Nonlinear system representation

Hammerstein

fh(.)u H x
Wiener

Hu fw (.) x
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Description not adapted to physical systems
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Volterra series

Hu x

Linear system: x(t) =
⁄

R
h(·) u(t ≠ ·) d·

Volterra series: x(t) =
ÿ

n=1

⁄

Rn
hn(·1, . . . , ·n)¸ ˚˙ ˝

Volterra kernels

u(t ≠ ·1) · · · u(t ≠ ·n) d·1 · · · d·n

Remarks
• General representation for regular nonlinearities
• ÷ kernel representation in the spectral domain
• Interconnection laws (sum, product, cascade) in temporal & spectral domain
• Representation only valid:

‚ around an equilibirum (here x0 = 0)
‚ in a computable convergence domain [Hélie and Laroche, 2011]

• Cannot perform hysteresis or chaotic behaviour
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Summary

From linear to nonlinear systems

• Immitance inversion (impedance ¡ admittance)
• Passivity
• System identification

Nonlinear order separation

• Order homogeneity in Volterra
• Idea 1: Using amplitude [Boyd et al., 1983]
• Idea 2: Using phase
• Simulation results
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Immitance inversion (impedance ¡ admittance)

Notion of immitance

Z

Y
Flow E�ort

Impedance

Admittance

C
current (A)

velocity (m/s)
acoustic flow (m3/s)

D C
voltage (V)
force (N)

acoustic pressure (Pa)

D

Linear system: Y (s) = 1
Z(s)

(with s the Laplace variable)

Volterra series (using interconnection laws) [Schetzen, 1976]:

Y1 © 1
Z1

and Yn © fct(Z1, . . . , Zn) for n Ø 2

Conclusion: ÷ well-defined inversion for nonlinear systems
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Passivity (u æ Immitance æ x)

Definition (Passivity [Youla et al., 1959; Boyd and Chua, 1982])
A system is passive if and only if it does not return more energy than it consumed, i.e.:

⁄ T

≠Œ
u(t) x(t) dt Ø 0 , ’T œ R

System Passivity criterion

u(t) æ [h ı u](t) linear Re[H(s)] Ø 0 ’s œ C+

u(t) æ u(t)n memoryless
homogeneous order Either

Ó n even ∆ not passive
n odd ∆ passive

u(t) æ
qN

n=1 –nu(t)n memoryless Positivity of polynomial of order
N + 1 of coe�cients {pn} = {–n≠1}

u[k] æ
qL

l=0 hn[l]u[k ≠ l]n
discrete time

volterra kernel
homogeneous order

Positivity of the eigenvalues of
supersymmetric tensor Fn
associated with hn [Qi, 2005]

In general: Open problem, no solution yet (work in progress)
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System identification

Idea: Computing the system function from input and output.

Linear systems

• Transfer function: H(s) = X(s)
U(s)

• Several methods of identification, in order to improve robustness
(Impulse response method, Spectral analysis, Cross-correlation method)

Nonlinear systems
B Notion of transfer function not valid

• For Volterra series: theoretical work by Boyd et al. [1983, 1984]
Order 1 & 2 in practice, robustness problems

• For Hammerstein system: Farina [2000]; Rébillat et al. [2011]; Novák et al. [2010]
Method robust, e�cient and quick

In general: Open problem, no solution yet (work in progress)
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From linear to nonlinear systems

• Immitance inversion (impedance ¡ admittance)
• Passivity
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Order homogeneity in Volterra

x(t) =
ÿ

n=1

⁄

Rn
hn(·1, . . . , ·n) u(t ≠ ·1) · · · u(t ≠ ·n) d·1 · · · d·n

¸ ˚˙ ˝
xn(t)

Idea: Having access to the xn(t) would simplify the identification.

Multilinearity of Volterra kernels

Vn
u(t) xn(t)

 Vn
–u(t) –nxn(t)
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Idea 1: Using amplitude [Boyd et al., 1983]

Collection of input uk(t) = –ku(t).
∆ the corresponding outputs are:

Âk(t) =
ÿ

n

–n
kxn(t)

∆

S

WWU

Â1
Â2
...

ÂN

T

XXV(t) =

S

WWU

–1 –2
1 . . . –N

1
–2 –2

2 . . . –N
2

...
...

. . .
...

–N –2
N . . . –N

N

T

XXV

S

WWU

x1
x2
...

xN

T

XXV(t)

�(t) = A X(t)

Advantages and disadvantages
4 easy to implement
6 amplitude spanning a large range  measurement error

6 matrix ill-conditioned  numerical error
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Idea 2: Using phase

Hypothesis: Use of complex signals: u(t) œ C

Same method, with –k œ C

∆

S

WWU

Â1
Â2
...

ÂN

T

XXV(t) =

S

WWU

–1 –2
1 . . . –N

1
–2 –2

2 . . . –N
2

...
...

. . .
...

–N –2
N . . . –N

N

T

XXV

S

WWU

x1
x2
...

xN

T

XXV(t)

�(t) = A Y (t)
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Idea 2: Using phase

Hypothesis: Use of complex signals: u(t) œ C

Same method, with –k œ C
Special case: – unit root: –k = e2ifi(k≠1)/N = wk≠1

∆

S

WWU

Â1
Â2
...

ÂN

T

XXV(t) =

S

WWU

1 1 . . . 1
w w2 . . . 1
...

...
. . .

...
wN w2N . . . 1

T

XXV

S

WWU

x1
x2
...

xN

T

XXV(t)

�(t) = A¸˚˙˝
DFT matrix

Y (t)

14 October 2016 Nonlinear problems and Volterra series 12 / 16



Presentation and context From linear to nonlinear systems Nonlinear order separation Conclusion

Idea 2: Using phase

Hypothesis: Use of complex signals: u(t) œ C

Same method, with –k œ C
Special case: – unit root: –k = e2ifi(k≠1)/N = wk≠1

∆

S

WWU

Â1
Â2
...

ÂN

T

XXV(t) =

S

WWU

1 1 . . . 1
w w2 . . . 1
...

...
. . .

...
wN w2N . . . 1

T

XXV

S

WWU

x1
x2
...

xN

T

XXV(t)

�(t) = A¸˚˙˝
DFT matrix

Y (t)

Advantages and disadvantages
4 only one amplitude  less measurement error

4 DFT matrix is well-conditioned
4 Can use FFT  numerical computation

6 Need for complex signals  only theoretical
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Simulation results (1)
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Simulation results (2)
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Simulation results (2)
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Conclusion

Volterra series, a useful and well-known system representation ...
• General paradigm for weakly nonlinear system
• Theory well developed: Volterra; Brockett; Schetzen; Rugh; Boyd
• Permits real-time computation

... with still a lot of open questions
• Still no criterion for system passivity (work in progress)
• No general and robust method for identification
• Nonlinear order separation is still not resolved:

adaptation of the "phase" method for real input (work in progress)
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