

Volterra series: Identification problems and nonlinear order separation

Damien BOUVIER¹, Thomas HÉLIE¹, David ROZE¹

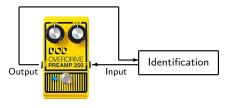
¹Project-team S3: Systems, Signals and Sound (http://s3.ircam.fr/) Science and Technology of Music and Sound UMR 9912 Ircam-CNRS-UPMC

14 October 2016

Presentation and context		Conclusion
000		0

Thesis (started in October 2015)

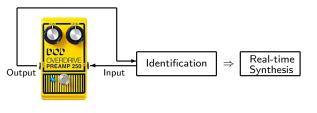
- Goal: Realist instrumental sound synthesis (tone evolution VS. note and loudness)
- Idea:



Presentation and context		
000		

Thesis (started in October 2015)

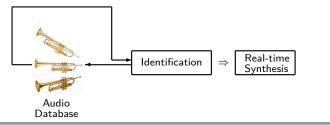
- Goal: Realist instrumental sound synthesis (tone evolution VS. note and loudness)
- Idea:



Presentation and context		Conclusion
000		0

Thesis (started in October 2015)

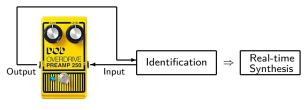
- Goal: Realist instrumental sound synthesis (tone evolution VS. note and loudness)
- Idea:



Presentation and context		
000		

Thesis (started in October 2015)

- Goal: Realist instrumental sound synthesis (tone evolution VS. note and loudness)
- Idea:



Nonlinear systems under study:

Distortion pedal, compressor, loudspeaker, nonlinear resonator, ...

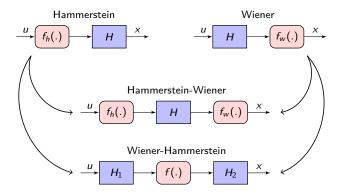
- Fading memory
- Regular nonlinearities:
 - > Taylor-like expansion
 - ➤ No chaotic behaviour

Presentation and context		
000		

Nonlinear system representation

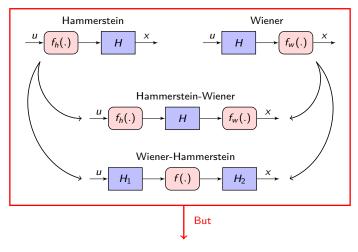
Presentation and context			Conclusion
000	000	000000	0

Nonlinear system representation



Presentation and context			
000	000	000000	0

Nonlinear system representation



Description not adapted to physical systems

Presentation and context		Conclusion
000		0

Volterra series

$$\underbrace{u}_{\mathcal{H}} \times$$
Linear system: $x(t) = \int_{\mathbb{R}} h(\tau) u(t-\tau) d\tau$

Presentation and context		Conclusion
000		0

Volterra series

Presentation and context		Conclusion
000		0

Volterra series

$$\underbrace{u}_{\mathcal{H}} \xrightarrow{x}$$

Linear system: $x(t) = \int_{\mathbb{R}} h(\tau) u(t-\tau) d\tau$
Volterra series: $x(t) = \sum_{n=1} \int_{\mathbb{R}^n} \underbrace{h_n(\tau_1, \dots, \tau_n)}_{\text{Volterra kernels}} u(t-\tau_1) \cdots u(t-\tau_n) d\tau_1 \cdots d\tau_n$

Remarks

- · General representation for regular nonlinearities
- $\bullet \ \exists$ kernel representation in the spectral domain
- Interconnection laws (sum, product, cascade) in temporal & spectral domain
- Representation only valid:
 - ▶ around an equilibirum (here $x_0 = 0$)
 - > in a computable convergence domain [Hélie and Laroche, 2011]
- Cannot perform hysteresis or chaotic behaviour

From linear to nonlinear systems	Conclusion
	0

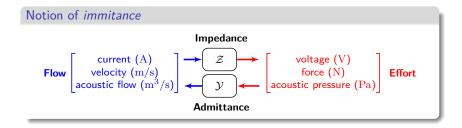
Summary

From linear to nonlinear systems

- Immitance inversion (impedance ↔ admittance)
- Passivity
- System identification

Nonlinear order separation

- Order homogeneity in Volterra
- Idea 1: Using amplitude [Boyd et al., 1983]
- Idea 2: Using phase
- Simulation results

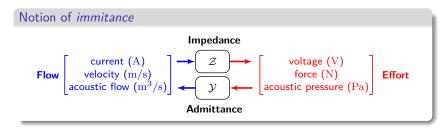


From linear to nonlinear systems		
● 00		0
	、 、	
n (impandance // admittance	.1	



Linear system: $Y(s) = \frac{1}{Z(s)}$ (with s the Laplace variable)

From linear to nonlinear systems		
000		
	\	

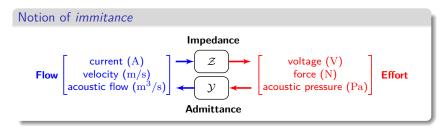


Linear system:
$$Y(s) = \frac{1}{Z(s)}$$
 (with s the Laplace variable)

Volterra series (using interconnection laws) [Schetzen, 1976]:

$$Y_1 \equiv rac{1}{Z_1}$$
 and $Y_n \equiv \operatorname{fct}(Z_1, \ldots, Z_n)$ for $n \geq 2$

From linear to nonlinear systems		
000		
	\	



Linear system: $Y(s) = \frac{1}{Z(s)}$ (with s the Laplace variable)

Volterra series (using interconnection laws) [Schetzen, 1976]:

$$Y_1 \equiv rac{1}{Z_1}$$
 and $Y_n \equiv \operatorname{fct}(Z_1, \ldots, Z_n)$ for $n \geq 2$

Conclusion: 3 well-defined inversion for nonlinear systems

	From linear to nonlinear systems	
	000	0
D		
Passivity ($u \rightarrow Imr$	mitance $\rightarrow x$)	

$$\int_{-\infty}^{T} u(t) x(t) \, \mathrm{d}t \geq 0 \, , \, \forall T \in \mathbb{R}$$

	From linear to nonlinear systems	
	000	0
Passivity ($u \rightarrow Im$	mitance $\rightarrow x$	

$$\int_{-\infty}^{T} u(t) x(t) \, \mathrm{d}t \geq 0 \, , \, \forall T \in \mathbb{R}$$

System		Passivity criterion
$u(t) ightarrow [h \star u](t)$	linear	$Re[H(s)] \geq 0 orall s \in \mathbb{C}^+$

	From linear to nonlinear systems	
	000	0
Passivity ($u \rightarrow Im$	mitance $\rightarrow x$	

$$\int_{-\infty}^{T} u(t) x(t) \, \mathrm{d}t \geq 0 \, , \, \forall T \in \mathbb{R}$$

System		Passivity criterion
$u(t) ightarrow [h \star u](t)$	linear	$Re[H(s)] \geq 0 orall s \in \mathbb{C}^+$
$u(t) ightarrow u(t)^n$	memoryless homogeneous order	Either $\begin{cases} n \text{ even } \Rightarrow \text{ not passive} \\ n \text{ odd } \Rightarrow \text{ passive} \end{cases}$

	From linear to nonlinear systems	
	000	
Passivity () In	····	

Passivity $(u \rightarrow \text{Immitance} \rightarrow x)$

Definition (Passivity [Youla et al., 1959; Boyd and Chua, 1982])

$$\int_{-\infty}^{T} u(t) x(t) \, \mathrm{d}t \geq 0 \, , \, \forall T \in \mathbb{R}$$

System		Passivity criterion
$u(t) ightarrow [h \star u](t)$	linear	$Re[H(s)] \geq 0 orall s \in \mathbb{C}^+$
$u(t) ightarrow u(t)^n$	memoryless homogeneous order	Either $\begin{cases} n \text{ even } \Rightarrow \text{ not passive} \\ n \text{ odd } \Rightarrow \text{ passive} \end{cases}$
$u(t) ightarrow \sum_{n=1}^{N} \alpha_n u(t)^n$	memoryless	Positivity of polynomial of order $N + 1$ of coefficients $\{p_n\} = \{\alpha_{n-1}\}$

	From linear to nonlinear systems	
	000	0
Passivity ($u \rightarrow Im$	mitance $\rightarrow x$	

A system is passive if and only if it does not return more energy than it consumed, i.e.:

$$\int_{-\infty}^{T} u(t) \times (t) \, \mathrm{d}t \geq 0 \, , \, \forall T \in \mathbb{R}$$

System		Passivity criterion
$u(t) ightarrow [h \star u](t)$	linear	$Re[H(s)] \geq 0 orall s \in \mathbb{C}^+$
$u(t) ightarrow u(t)^n$	memoryless homogeneous order	Either $\begin{cases} n \text{ even } \Rightarrow \text{ not passive} \\ n \text{ odd } \Rightarrow \text{ passive} \end{cases}$
$u(t) \rightarrow \sum_{n=1}^{N} \alpha_n u(t)^n$	memoryless	Positivity of polynomial of order $N + 1$ of coefficients $\{p_n\} = \{\alpha_{n-1}\}$
$u[k] \to \sum_{l=0}^{L} h_n[l] u[k-l]^n$	discrete time volterra kernel homogeneous order	Positivity of the eigenvalues of supersymmetric tensor \mathbb{F}_n associated with h_n [Qi, 2005]

In general: Open problem, no solution yet (work in progress)

	From linear to nonlinear systems	Conclusion
	000	0
System identification		

Idea: Computing the system *function* from input and output.

	From linear to nonlinear systems	Conclusion O
Contract the office star		

System identification

Idea: Computing the system function from input and output.

Linear systems

- Transfer function: $H(s) = \frac{X(s)}{U(s)}$
- Several methods of identification, in order to improve robustness (Impulse response method, Spectral analysis, Cross-correlation method)

From linear to nonlinear systems	Conclusion
000	0

System identification

Idea: Computing the system function from input and output.

Linear systems

- Transfer function: $H(s) = \frac{X(s)}{U(s)}$
- Several methods of identification, in order to improve robustness (Impulse response method, Spectral analysis, Cross-correlation method)

Nonlinear systems

▲ Notion of *transfer function* not valid

- For Volterra series: theoretical work by Boyd et al. [1983, 1984] Order 1 & 2 in practice, robustness problems
- For Hammerstein system: Farina [2000]; Rébillat et al. [2011]; Novák et al. [2010] Method robust, efficient and quick

In general: Open problem, no solution yet (work in progress)

	Nonlinear order separation	Conclusion
		0
		-

From linear to nonlinear systems

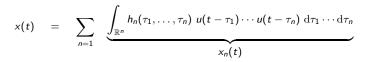
- Immitance inversion (impedance ↔ admittance)
- Passivity
- System identification

Nonlinear order separation

- Order homogeneity in Volterra
- Idea 1: Using amplitude [Boyd et al., 1983]
- Idea 2: Using phase
- Simulation results

	Nonlinear order separation	Conclusion
	00000	0

Order homogeneity in Volterra



<u>Idea</u>: Having access to the $x_n(t)$ would simplify the identification.

	Nonlinear order separation	Conclusion
	00000	0

Order homogeneity in Volterra

$$x(t) = \sum_{n=1} \underbrace{\int_{\mathbb{R}^n} h_n(\tau_1, \ldots, \tau_n) u(t-\tau_1) \cdots u(t-\tau_n) d\tau_1 \cdots d\tau_n}_{X_n(t)}$$

<u>Idea</u>: Having access to the $x_n(t)$ would simplify the identification.

	Nonlinear order separation	Conclusion
	00000	0

Idea 1: Using amplitude [Boyd et al., 1983]

Collection of input $u_k(t) = \alpha_k u(t)$. \Rightarrow the corresponding outputs are:

$$\psi_k(t) = \sum_n \alpha_k^n \mathbf{x}_n(t)$$

	Nonlinear order separation	Conclusion
	00000	0

Idea 1: Using amplitude [Boyd et al., 1983]

Collection of input $u_k(t) = \alpha_k u(t)$. \Rightarrow the corresponding outputs are:

$$\psi_{k}(t) = \sum_{n} \alpha_{k}^{n} x_{n}(t)$$

$$\Rightarrow \begin{bmatrix} \psi_{1} \\ \psi_{2} \\ \vdots \\ \psi_{N} \end{bmatrix} (t) = \begin{bmatrix} \alpha_{1} & \alpha_{1}^{2} & \dots & \alpha_{1}^{N} \\ \alpha_{2} & \alpha_{2}^{2} & \dots & \alpha_{2}^{N} \\ \vdots & \vdots & \ddots & \vdots \\ \alpha_{N} & \alpha_{N}^{2} & \dots & \alpha_{N}^{N} \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{N} \end{bmatrix} (t)$$

$$\Psi(t) = \mathbf{A} \qquad \mathbf{X}(t)$$

	Nonlinear order separation	Conclusion
	00000	0

Idea 1: Using amplitude [Boyd et al., 1983]

Collection of input $u_k(t) = \alpha_k u(t)$. \Rightarrow the corresponding outputs are:

$$\psi_{k}(t) = \sum_{n} \alpha_{k}^{n} \times_{n}(t)$$

$$\Rightarrow \begin{bmatrix} \psi_{1} \\ \psi_{2} \\ \vdots \\ \psi_{N} \end{bmatrix} (t) = \begin{bmatrix} \alpha_{1} & \alpha_{1}^{2} & \dots & \alpha_{1}^{N} \\ \alpha_{2} & \alpha_{2}^{2} & \dots & \alpha_{2}^{N} \\ \vdots & \vdots & \ddots & \vdots \\ \alpha_{N} & \alpha_{N}^{2} & \dots & \alpha_{N}^{N} \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{N} \end{bmatrix} (t)$$

$$\Psi(t) = \mathbf{A} \qquad \mathbf{X}(t)$$

Advantages and disadvantages

✓ easy to implement

- ★ amplitude spanning a large range ~→ measurement error
- ***** matrix ill-conditioned \rightsquigarrow numerical error

	Nonlinear order separation	Conclusion O

Hypothesis: Use of complex signals: $u(t) \in \mathbb{C}$

	Nonlinear order separation	Conclusion
	000000	0

Hypothesis: Use of complex signals: $u(t) \in \mathbb{C}$

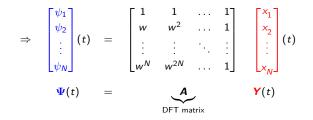
Same method, with $\alpha_k \in \mathbb{C}$

$$\Rightarrow \begin{bmatrix} \psi_1 \\ \psi_2 \\ \vdots \\ \psi_N \end{bmatrix} (t) = \begin{bmatrix} \alpha_1 & \alpha_1^2 & \dots & \alpha_1^N \\ \alpha_2 & \alpha_2^2 & \dots & \alpha_2^N \\ \vdots & \vdots & \ddots & \vdots \\ \alpha_N & \alpha_N^2 & \dots & \alpha_N^N \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_N \end{bmatrix} (t)$$
$$\Psi(t) = \mathbf{A} \qquad \mathbf{Y}(t)$$

		Nonlinear order separation	Conclusion
000	000	00000	0

Hypothesis: Use of complex signals: $u(t) \in \mathbb{C}$

Same method, with $\alpha_k \in \mathbb{C}$ Special case: α unit root: $\alpha_k = e^{2i\pi(k-1)/N} = w^{k-1}$



		Nonlinear order separation	Conclusion
000	000	00000	0

Hypothesis: Use of complex signals: $u(t) \in \mathbb{C}$

Same method, with $\alpha_k \in \mathbb{C}$ Special case: α unit root: $\alpha_k = e^{2i\pi(k-1)/N} = w^{k-1}$

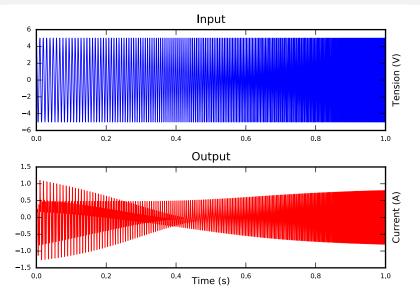


Advantages and disadvantages

- \checkmark only one amplitude \rightsquigarrow less measurement error
- DFT matrix is well-conditioned
- ✓ Can use FFT → numerical computation
- ★ Need for complex signals ~→ only theoretical

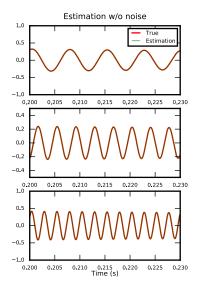
	Nonlinear order separation	Conclusion
	000000	0

Simulation results (1)



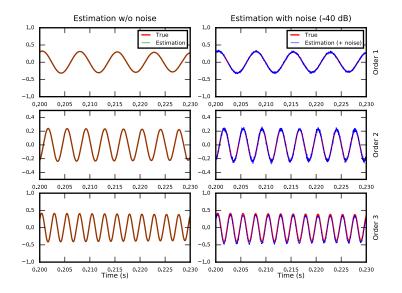
	Nonlinear order separation	Conclusion
	000000	0

Simulation results (2)



	Nonlinear order separation	
	000 00	

Simulation results (2)



	Conclusion
	•

Conclusion

Volterra series, a useful and well-known system representation ...

- General paradigm for weakly nonlinear system
- Theory well developed: Volterra; Brockett; Schetzen; Rugh; Boyd
- Permits real-time computation

	Conclusion
	•

Conclusion

Volterra series, a useful and well-known system representation ...

- General paradigm for weakly nonlinear system
- Theory well developed: Volterra; Brockett; Schetzen; Rugh; Boyd
- Permits real-time computation

... with still a lot of open questions

- Still no criterion for system passivity (work in progress)
- No general and robust method for identification
- Nonlinear order separation is still not resolved: adaptation of the "phase" method for real input (work in progress)

Bibliographie I

- Thomas Hélie and Béatrice Laroche. Computation of convergence bounds for Volterra series of linear-analytic single-input systems. *Automatic Control, IEEE Transactions* on, 56(9):2062–2072, 2011.
- Stephen Boyd, YS Tang, and Leon O Chua. Measuring volterra kernels. *Circuits and Systems, IEEE Transactions on*, 30(8):571–577, 1983.
- Martin Schetzen. Theory of pth-order inverses of nonlinear systems. *Circuits and Systems, IEEE Transactions on,* 23(5):285–291, 1976.
- Dante C Youla, LJ Castriota, and Herbert J Carlin. Bounded real scattering matrices and the foundations of linear passive network theory. *Circuit Theory, IRE Transactions on*, 6(1):102–124, 1959.
- S Boyd and Leon O Chua. On the passivity criterion for lti N-ports. *International Journal of Circuit Theory and Applications*, 10(4):323–333, 1982.
- Liqun Qi. Eigenvalues of a real supersymmetric tensor. *Journal of Symbolic Computation*, 40(6):1302–1324, 2005.
- Stephen Boyd, Leon O Chua, and Charles A Desoer. Analytical foundations of Volterra series. IMA Journal of Mathematical Control and Information, 1(3):243–282, 1984.
- Angelo Farina. Simultaneous measurement of impulse response and distortion with a swept-sine technique. In *Audio Engineering Society Convention 108*. Audio Engineering Society, 2000.

Bibliographie II

- Marc Rébillat, Romain Hennequin, Etienne Corteel, and Brian FG Katz. Identification of cascade of Hammerstein models for the description of nonlinearities in vibrating devices. *Journal of Sound and Vibration*, 330(5):1018–1038, 2011.
- Antonín Novák, Laurent Simon, František Kadlec, and Pierrick Lotton. Nonlinear system identification using exponential swept-sine signal. *IEEE Transactions on Instrumentation and Measurement*, 59(8):2220–2229, 2010.
- Vito Volterra. *Theory of functionals and of integral and integro-differential equations*. Courier Corporation, 2005.
- Roger W Brockett. Volterra series and geometric control theory. *Automatica*, 12(2): 167–176, 1976.
- Martin Schetzen. *The Volterra and Wiener theories of nonlinear systems*. {John Wiley & Sons}, 1980.
- Wilson John Rugh. *Nonlinear system theory*. Johns Hopkins University Press Baltimore, 1981.
- Stephen Poythress Boyd. *Volterra series: Engineering fundamentals.* PhD thesis, University of California, Berkeley, 1985.